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Abstract

Since the impulse response of a system is a transient and non-stationary signal, difference of record
length makes the unit impulse response spectrum of the system to be not unique. It means that the
magnitudes and phases of the frequency response function obtained from impact hammer testing depend
on the record length. Whenever the record length is not longer than the duration time during which the
impulse response completely diminishes, ‘finite record length error’ takes place in the impulse response
spectrum. In this paper, the finite record length error is theoretically verified and a new method reducing the
error is introduced. The system parameters to induce the finite record length error are investigated, and an
optimization method is also proposed to reduce this error. Numerical and experimental examples are
carried out to show the characteristics of the finite record length error and the validity of the new method
proposed in this paper.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Impact hammer testing has been used in wide area of engineering to get frequency response
function (FRF) owing to its convenience and simplicity on experimentation as well as its validity
on analysis procedure [1–3]. There have been various works in which some kinds of problem such
see front matter r 2005 Elsevier Ltd. All rights reserved.
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as leakage error, the ratio of signal to noise (S/N ratio), low-pass filtering, nonlinearity, window
function and so on are improved to get more accurate FRF from impact hammer testing [4–6].
When a system is excited by an impact hammer, the system vibrates for a while and the response

finally dies down. In fact, the time duration of the free vibration depends on the physical
characteristics of the system, especially its damping coefficient. The record length for signal
analysis is usually restricted by the memory size and computation time of the dynamic analyzer. It
is difficult to have a record length longer than the time duration of the signal for system having
low damping coefficient. In this case, significant errors occur in the FRF obtained by impact
hammer testing [7,8]. It is termed as finite record length error in this paper.
In this paper, the finite record length error in a FRF is theoretically identified by using the unit

impulse response function. The disadvantage of applying an exponential window function to an
impulse response signal is also proved analytically [9]. After the correct expression for the impulse
response spectrum considering the finite record length error is derived, a new method is suggested
to estimate the modal parameters of the system by using the expression. Numerical and
experimental examples are carried out to show the validity and usefulness of the new method
proposed in this paper.
2. Theoretical background

2.1. Finite record-length error in impulse response spectrum

The equation of motion of a viscously damped 1-dof system is described as follows

m €xðtÞ þ c _xðtÞ þ kxðtÞ ¼ f ðtÞ. (1)

The impulse response under unit impulse input of the Dirac delta function is well known as

hðtÞ ¼
e�zont

mod

sinodt; tX0, (2)

where h(t), z; and od mean unit impulse response function, damping ratio, and damped angular
frequency of a system, respectively. Considering a field test such as impact hammer testing, the
infinite time cannot be integrated and must be modified for a record length TRL when Fourier
transformation is carried out. And then the Fourier transformation of h(t) in Eq. (2) is written as

HðoÞ
��
TRL

¼

Z TRL

0

e�zont

mod

sinodte�jot dt ¼
1

k � o2m þ joc
½1� EðoÞjTRL �, (3)

where

EðoÞ
��
TRL

¼ e�zonTRLejoTRL
zffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sinodTRL þ cosodTRL þ j
o
od

sinodTRL

( )
(4)

represents the finite record length error in this paper, and TRL is the record length during which
the signal is acquired in an impact hammer testing. If the record length TRL were infinite, the finite
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record-length error could disappear and then the FRF be

HðoÞ ¼ lim
TRL!1

HðoÞ
��
TRL

¼
1

k � o2m þ joc
¼

1=k

1� ðo=onÞ
2
þ j2zðo=onÞ

. (5)

This means that the FRF obtained from an impact hammer testing would match the theoretical
FRF only when the record length is infinite. However, the finite record length error is not actually
avoidable because the record length should be inevitably finite in the real test condition such as
impact hammer testing.
2.2. Distortion of FRF caused by exponential window function

Exponential window function is usually applied to an impulse response signal in order to reduce
the finite record length error as well as the leakage error which takes place when the record length
is not sufficiently long. If an exponential window function with decay rate a is applied to Eq. (2),
the unit impulse response is revised as

hwðtÞ ¼ e
�at e

�zont

mod

sinodt; tX0. (6)

When the time data is acquired for a record length TRL, the Fourier transformation of Eq. (6) is
described as [9,10]

H̄wðoÞjTRL ¼

Z TRL

0

e�at e
�zont

mod

sinodte�jot dt

¼
1=k

1� ðo=onÞ
2
þ 2zða=onÞ þ ða=onÞ

2
þ j2ðzþ a=onÞo=on

½1� EwðoÞjTRL �, ð7Þ

where

EwðoÞ
��
TRL

¼ e�ða=onþzÞonTRL
o
od

sin odTRL sin oTRL þ
a
on

þ z
� �

on

od

sin odTRL cos oTRL

	

þ cos odTRL cos oTRL þ j
o
od

sin odTRL cos oTRL




�
a
on

þ z
� �

on

od

sin odTRL � sin oTRL � cos odTRL sin oTRL

��
. ð8Þ

The EwðoÞ
��TRL given in Eq. (8) represents the finite record length error of the exponentially

windowed FRF. It is known from Eq. (8) that the finite record length error still remains in the
FRF if the decay rate a or the record length TRL is finite. By selecting a large decay rate of the
exponential window function, the finite record length error EwðoÞ can be removed so that the fully
windowed FRF becomes

�HwðoÞ
��
TRL

¼
1=k

1� ðo=onÞ
2
þ 2zða=onÞ þ ða=onÞ

2
þ j2ðzþ a=onÞo=on

. (9)
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Eq. (9) shows that the exponential-windowed FRF is still different from the theoretical FRF given
in Eq. (5), although the effect of its decay rate in the imaginary part of the denominator of Eq. (9)
can be removed by modal analysis technique.

2.3. Expression of finite record length error for multi-dof system

The equation of motion of the viscously damped n-dof system is described as follows

½M�f €xðtÞg þ ½C�f _xðtÞg þ ½K �fxðtÞg ¼ f f ðtÞg. (10)

A FRF of Eq. (10), the displacement response of a point l by the exciting force of a point i, is
theoretically known as

HilðoÞ ¼
X lðoÞ
FiðoÞ

¼
Xn

r¼1

flrfir

ðkr � o2mr þ jocrÞ
; (11)

where FiðoÞ; X lðoÞ; fir and flr are the spectrum of the force input, the spectrum of the
displacement output, the value of the rth natural modal vectors of a point i and the value of a
point l, respectively. And kr, mr and cr represent respectively the modal stiffness, mass, and
damping coefficient of the multi-dof system given in Eq. (10).
On the other hand, if the exciting force of the Dirac delta function is applied to a point i, the

unit impulse response function at a point l will be [11–13]

hilðtÞ ¼
Xn

r¼1

flrfir

mrodr

e�zronrt sinodrt. (12)

Since the signal should be acquired for only a record length TRL in a real situation, the Fourier
transformation of the unit impulse response given in Eq. (12) can be calculated as

H̄ilðoÞjTRL40 ¼
Z TRL

�0

hilðtÞe
�jotdt ¼

Xn

r¼1

flrfir

kr � o2mr þ jocr

½1� ErðjoÞjTRL �; (13)

where

ErðoÞjTRL ¼ e�ðzonrþjoÞTRL
zrffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q sinodrTRL þ cosodrTRL þ j
o
odr

sinodrTRL

8><
>:

9>=
>;. (14)

In this paper, ErðoÞ
��TRL in Eq. (14) is called as the finite record length error of the rth mode of the

FRF. As mentioned at the previous paragraph, Eq. (13) shows that the exact FRF of a multi-dof
system cannot be also obtained from the impulse response spectrum as long as the record length
TRL is finite.
Until now, the unit impulse response function has been analytically dealt with to show the

existence and characteristics of the finite record length error. The finite record length error should
be properly dealt with in discrete data to usefully remove this error in an actual impact hammer
testing. From now on, the spectrum of discrete signals of an impulse force and its impulse
response is considered to improve the FRF obtained by an impact hammer testing. Although
there may be different expressions, in dynamic signal analyzer the impulse response spectrum is
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actually obtained from the following equation:

ĤilðkDf Þ ¼
X lðkDf Þ

FiðkDf Þ
; k ¼ 0; 1; . . . ;N=2. (15)

In Eq. (15), the denominator which is the discrete Fourier transformation of an impulsive force
may have no finite record length error because the signal of impact force is certainly much shorter
than the record length in any impact hammer testing. But the numerator of Eq. (15), the discrete
Fourier transformation of the impulse response has the finite record length error when the record
length is not sufficiently long. Consequently, the FRF obtained from the impact hammer testing
cannot avoid the finite record length error in case that the record length is not longer than the
duration time for complete disappearance of the impulse response. The record length should be
properly chosen according to the signal processing ability of the dynamic analyzer, frequency
resolution, the ratio of signal to noise (S/N ratio) and so on. Since the duration time of a lightly
damped structure is too long to completely acquire all the signals, it is necessary to improve the
impulse response spectrum in order to get a better FRF.
3. Improvement of impulse response spectrum

In this section, the correct expression of the impulse response spectrum including the finite
record length error is theoretically derived, and an optimization method is introduced to reduce
the error and get more improved FRF of the system.

3.1. Impulse response spectrum entailing finite record length error

As shown in Eq. (2), the unit impulse response function of a multi-dof system can be
expressed as

hðtÞ ¼
Xn

r¼1

Are
�srt sinodrt, (16)

Ar ¼
flrfir

mrodr

, (16a)

sr ¼ zronr, (16b)

odr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
onr. (16c)

In Eq. (16), Ar, sr; and odr are the rth modal constant, the rth modal damping and the rth damped
angular frequency of the system, respectively. If the signal of Eq. (16) is digitized with a sampling
time Dt and a discrete Fourier transformation applied, then the impulse response spectrum can be
written as

~HðkDf Þ ¼
TRL

N

XN�1

i¼0

Xn

r¼1

Are
�sriTRL=N sin½odriDt�e�j2pki=N ; k ¼ �

N

2
; . . . ;

N

2
� 1, (17)
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where N represents the number of data for discrete Fourier transformation, and n is the degree of
freedom of the system. Using the sum’s formula of geometric progression, Eq. (17) can be
rewritten as

~HðkDf Þ ¼
TRL

2j

Xn

r¼1

Ar
1� e�½srTRL�j2pðar�kÞ�

N½1� e�½srTRL�j2pðar�kÞ�=N �

	
�

1� e�½srTRLþj2pðarþkÞ�

N½1� e�½srTRLþj2pðarþkÞ�=N �

�
,

k ¼ �
N

2
; . . . ;�1; 0; 1; . . . ;

N

2
� 1, ð18Þ

where

ar ¼
f dr

Df
¼ f drTRL ¼

od

2p
TRL (19)

means the number of sinusoidal waves of rth mode which exists within the record length TRL.
Since ar generally is a real number, it should be divided into an integer part and a decimal fraction
part as follows:

ar ¼ pr ðinteger partÞ þ qr ðdecimal fraction partÞ (20)

where the integer number pr stands for a serial number pointing out the peak of the rth mode on
the impulse response spectrum, and the decimal fraction number qr describes the resolution error
which disturbs to find the exact peak frequency on the spectrum. Assuming the number of data N
in Eq. (18) to be sufficiently large and substituting Eq. (20) into Eq. (18), the impulse response
spectrum is rewritten as

~HðkDf Þ ¼
TRL

2

Xn

r¼1

Ar
1� e�srTRLej2pfðprþqrÞ�kg

2pfðpr þ qrÞ � kg þ jsrTRL

	
þ

1� e�srTRLe�j2pfðprþqrÞþkg

2pfðpr þ qrÞ þ kg � jsrTRL

�
. (21)

Eq. (21) is the expression of the unit impulse response spectrum including the finite record
length error.
When the impulse response spectrum ĤilðkDf Þ of Eq. (15) obtained by an impact hammer

testing is compared to ~HðkDf Þ of Eq. (21) derived from the unit impulse response function, their
magnitude and phase should be exactly the same at all frequencies.
There are results available for a single dof method by which the unknown parameters Ar, sr;

and qr in Eq. (21) can be directly calculated from the correct expression of a single dof FRF
including the finite record length errors [7,8]. In this method, the rth modal damping sr of each
mode is firstly calculated by solving the following equation:

sr ¼
p

TRL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

R2rþ � R2r�

R2rþ þ R2r� � 2

 !2
þ

8

R2rþ þ R2r� � 2

vuut , (22)

where Rr+ and Rr� represent the ratio of the rth peak value to the fore and aft values of the peak
respectively. The previous research also derived the following equations which show the relation
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of the unknown parameters:

R2r� ¼
Ĥ½prDf �

Ĥ½ðpr � 1ÞDf �

�����
�����
2

¼
½2prðqr þ 1Þ þ ðsrTRL=2pÞ

2
�2 þ ½2ðsrTRL=2pÞ�2

½qr � 2pr þ ðsrTRL=2pÞ
2
�2 þ ½2ðsrTRL=2pÞpr�

2
, (23)

R2rþ ¼
Ĥ½prDf �

Ĥ½ðpr þ 1ÞDf �

�����
�����
2

¼
½2prðqr � 1Þ þ ðsrTRL=2pÞ

2
�2 þ ½2ðsrTRL=2pÞ�2

½qr � 2pr þ ðsrTRL=2pÞ
2
�2 þ ½2ðsrTRL=2pÞpr�

2
, (24)

where Ĥ½prDf � is the peak value showing on the spectrum obtained by impact hammer testing,
and Ĥ½ðpr � 1ÞDf � and Ĥ½ðpr þ 1ÞDf � are the fore and aft values of the peak, respectively. By using
the above Eqs. (19)–(24), the unknown parameters of each mode of the FRF can be directly
calculated [7,8]. The parameters calculated by the single dof method cannot avoid some errors
caused by mode coupling of the multi-dof system because of the assumption of the single dof
model. Nevertheless, this single dof method is still useful for a lightly damped model, to find initial
values of an optimization method which will be introduced below.

3.2. FRF of multi-dof model improved by an optimization algorithm

Each mode of the multi-dof system is actually coupled with its adjacent modes so that mode
coupling should be considered to estimate more accurate FRF from an impulse response
spectrum. In this paper, an optimization algorithm is applied to the impulse response spectrum
entailing the finite record length error in order to calculate the unknown parameters of the
impulse response function, such as the rth modal constant value Ar, the rth modal damping sr and
the rth damped natural frequency odr in Eq. (16).
The ultimate purpose of the optimization method proposed in this paper is to minimize the

discrepancies between the impulse response spectrum obtained by the experiments given in Eq.
(15) and the expression of the spectrum entailing the finite record length error given in Eq. (21). In
order to establish the cost function of the optimization algorithm, first of all, the right-hand side
of Eq. (21) is divided into a real part and an imaginary part as follows [8]

~HðkDf Þ ¼ Re½ ~HðkDf Þ� þ j Im½ ~HðkDf Þ�, (25)

where

Re½ ~HðkDf Þ� ¼ TRL

Xn

r¼1

Are
�srTRL ½�16p2TRLk2sr sin 2pqr þ f4p2ððpr þ qrÞ

2
� k2Þ þ T2

RLs
2
r g

� f4pðpr þ qrÞðe
srTRL � cos 2pqrÞ � 2TRLsr sin 2pqrg�

C½16p2T2
RLk2s2r þ f4p2ððpr þ qrÞ

2
� k2Þ þ T2

RLs
2
r g
2�,

Im½ ~HðkDf Þ� ¼ � TRL

Xn

r¼1

Ar4pke�srTRL ½4pðpr þ qrÞTRLsrðe
srTRL � cos 2pqrÞ

þ f4p2rp
2 þ 8prqrp

2 þ 4p2ðq2r � k2Þ þ T2
RLs

2
r g sin 2pqr�

C½16p2T2
RLk2s2r þ f4p2ððpr þ qrÞ

2
� k2Þ þ T2

RLs
2
r g
2�.
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Eq. (25), a function including the parameters qr, Ar and sr; can be simply expressed as
follows

~Hkðfqg
T; fAgT; fsgTÞ ¼ ~HRkðfqg

T; fAgT; fsgTÞ þ j ~HIkðfqg
T; fAgT; fsgTÞ, (26)

where

~HðfqgT; fAgT; fsgTÞ ¼ ~Hðq1; . . . ; qn;A1; . . . ;An;s1; . . . ; snÞ.

In Eq. (26), ~Hkðfqg
T
; fAgT; fsg

TÞ; a complex value of the impulse response spectrum entailing the
finite record length error, is divided into the real part ~HRkðfqg

T
; fAgT; fsg

TÞ and the imaginary part
~HIkðfqg

T
; fAgT; fsg

TÞ: Now the differences of magnitude between the experimental spectrum of Eq.
(15) and the correct expression of Eq. (25) are summed at all the frequencies. And the summed
value is defined as a cost function for the optimization method which represents at the following
equation:

J½fqgT; fAgT; fsgT� ¼
XN=2�1

k¼0

f ~HRkðfqg
T; fAgT; fsgTÞ �Re½ĤðkDf Þ�g2

þ
XN=2�1

k¼0

f ~HIkðfqg
T; fAgT; fsgTÞ � Im½ĤðkDf Þ�g2, ð27Þ

where ĤðkDf Þ is a complex value of the impulse response spectrum obtained by an impact
hammer testing at a frequency kDf : In Eq. (27), the 3n values of the frequency errors qr, the modal
constant values Ar, and the modal dampings sr ðr ¼ 1; . . . ; nÞ are regarded as the design
parameters of the optimization. For convenience of mathematical expression, the 3n design
parameters is represented as ui ði ¼ 1; . . . ; 3nÞ: If the cost function in Eq. (27) is differentiated over
the design parameters to determine their optimum values minimizing the cost, the following
equation is obtained:

qJ

qui

¼ 2
XN=2�1

k¼0

f ~HRk �Re½ĤðkDf Þ�g
q ~HRk

qui

�
þf ~HIk � Im½ĤðkDf Þ�g

q ~HIk

qui

�
; i ¼ 1; . . . ; 3n. (28)

According to the Gauss–Newton method [14], the search direction for optimum values is
determined by solving the following simultaneous equation:

X3n
j¼1

q2J
qui quj

Duj ¼ �
qJ

qui

; i ¼ 1; . . . ; 3n. (29)

In this paper, the second-order differentiations in Eq. (29) are approximated by the first-order
differentiations as follows:

q2J
qui quj

¼ 2
XN=2�1

k¼0

q ~HRk

qui

wk
q ~HRk

quj

þ
q ~HIk

qui

wk
q ~HIk

quj

� �
, (30)

�
qJ

qui

¼ 2
XN=2�1

k¼0

q ~HRk

qui

wkðRe½ĤðkDf Þ� � ~HRkÞ

�
þ

q ~HIk

qui

wkðIm½ĤðkDf Þ� � ~HIkÞ

�
, (31)
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where wk is the weighting factor with respect to a frequency kDf : Once the suitable direction for
optimum design changes is calculated by Eqs. (29)–(31), the step size a can be determined by the
golden section search method [14].

uf gðmþ1Þ ¼ uf gðmÞ þ a Duf g. (32)

New values of the design parameters calculated by Eq. (32) are used for the next step of the
optimization method. This process is repeated until new design parameters ui ði ¼ 1; . . . ; 3nÞ; or qr,
Ar, sr ðr ¼ 1; . . . ; nÞ; make the cost function be a minimum. Once the optimum values of the
parameters qr, Ar, sr are estimated, the improved FRF is calculated by the following equation
which is a revision of Eq. (11) composed of the design parameters:

HðoÞ ¼
Xn

r¼1

2pDf ðpr þ qrÞAr

f4p2Df 2ðpr þ qrÞ
2
þ s2r � o2 þ j2srog

: (33)

In Eq. (33), the serial number of rth mode peak pr and the frequency resolution Df are readable on
the impulse response spectrum obtained by the impact hammer testing.
4. Numerical and experimental examples

4.1. Numerical example

The 3-dof lightly damped model shown in Fig. 1 is numerically simulated to show whether the
finite record length error takes place in the impulse response spectrum according to the length of
recording time. In this example, the response of the model is calculated by the Runge–Kutta
method when the force f(t) is impulsively enforced.
To show a case of almost no finite record length error, the impulse response is calculated with

16,348 (214) steps for 20 s. The impulsive force and the response signals obtained are plotted in
Fig. 2. The frequency-magnitude and Nyquist plot of the impulse response spectrum are plotted in
Figs. 3 and 4, respectively, which are compared with the exact FRF theoretically obtained by
Fig. 1. A 3-dof damped model (m1 ¼ m2 ¼ m3 ¼ 3kg; k1 ¼ k2 ¼ k3 ¼ 15; 000N=m; c1 ¼ c2 ¼ c3 ¼ 0:2N=m=s).
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Fig. 2. Impulse force and its response signals for the model in Fig. 1 (16,348 samples for 20 s).

Fig. 3. Comparison between the theoretical FRF and the impulse response spectrum (in case of 16,348 samples for

20 s).

S.J. Ahn et al. / Journal of Sound and Vibration 288 (2005) 1223–12391232
modal analysis [11,12]. It is shown from Figs. 3 and 4 that the impulse response spectrum is well
matched to the exact FRF except the frequency resolution error when the record length is
sufficiently long.



ARTICLE IN PRESS

Fig. 4. Comparison between Nyquist plot of the theoretical FRF and one of the impulse response spectrum (in case of

16,348 samples for 20 s).

Fig. 5. Impulse force and its response signals for the model in Fig. 1 (1024 samples for 1.25 s).

S.J. Ahn et al. / Journal of Sound and Vibration 288 (2005) 1223–1239 1233
It must be considered that the record length is limited by various reasons, such as capacity of
memory resister, computation time, the ratio of signal to noise (S/N ratio) and so forth. The force
and its response signal of 1024 data for 1.25 s are plotted in Fig. 5, which is referred as a
insufficient record length. The frequency-magnitude and Nyquist plot of the impulse response
spectrum are plotted in Figs. 6 and 7, respectively, and are compared with the exact FRF. It is
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Fig. 6. Comparison between the theoretical FRF and the impulse response spectrum (in case of 1024 samples for

1.25 s).

Fig. 7. Comparison between Nyquist plot of the theoretical FRF and one of the impulse response spectrum (in case of

1024 samples for 1.25 s).

S.J. Ahn et al. / Journal of Sound and Vibration 288 (2005) 1223–12391234
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Table 1

Initial and optimum values of the system parameters obtained by the single dof method and the optimization method,

respectively

Initial Optimum Exact

q1 �0.0402 0.0477 0.0479

q2 �0.1227 �0.0885 �0.0883

q3 0.2565 0.1982 0.1988

A1 4.95� 10�3 4.85� 10�3 4.87� 10�3

A2 4.80� 10�3 5.21� 10�3 5.27� 10�3

A3 1.63� 10�3 1.97� 10�3 2.02� 10�3

s1 0.230 0.195 0.195

s2 0.501 0.669 0.667

s3 0.674 1.131 1.138

Fig. 8. Comparison between the theoretical FRF and the improved FRF by an optimization method.

S.J. Ahn et al. / Journal of Sound and Vibration 288 (2005) 1223–1239 1235
shown from Figs. 6 and 7 that the impulse response spectrum is different from the exact FRF
when the record length is not properly long.
In this simulation example, the optimization method is applied to the impulse response

spectrum entailing the finite record length to show the validity of its results. To calculate the
parameters qr, Ar and sr as initial values of the optimization method, the single dof method is
used. The initial and the optimum values are compared with the exact values in Table 1. The
frequency-magnitude and Nyquist plot obtained by substituting the optimum values into Eq. (33)
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Fig. 9. Comparison between Nyquist plot of the theoretical FRF and one of an improved FRF calculated by the

optimization method.
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are presented in Figs. 8 and 9, respectively. It is shown from these figures that the optimization
method proposed in this paper is needed to calculate the improved FRF from the impulse
response spectrum including the finite record length error.

4.2. Experimental example

An aluminum plate mounted on 4 rubber posts is used for an impact hammer testing. The
aluminum plate has the length of 500mm, the width 510mm, the thickness 5.9mm and the density
2193 kg/m3. A plastic tip is mounted on the head of the impact hammer used in this experiment in
order that the aluminum plate is excited up to the interesting frequency, 150Hz, without
significant error caused by the shape of the impulse signal. The time history is displayed in Fig. 10
when the plate is excited by an impact hammer. The vibration signal still oscillates after 8 s, which
means that a record length longer than 8 s is necessary to get the correct FRF of the plate without
the finite record length error. In Figs. 11 and 12, the magnitudes and phases of the impulse
response spectrum using the record lengths of 8 s and 1 s are compared with those of the FRF
improved by the optimization method with an impulse response spectrum of 1.0 s. In this paper, it
is assumed that the impulse response spectrum of 8 s record length is nearly close to the exact FRF
of the rubber-mounted plate because its record length is sufficiently long for the acceleration
response to disappear. It is clear from Figs. 11 and 12 that the impulse response spectrum of 1 s
record length is different from that of 8 s in the magnitude and phase because of its finite record
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Fig. 11. Magnitudes of two impulse response spectra with 1.0 s record length, 8.0 s record length, and the improved

FRF.

Fig. 10. Acceleration signal of an impulse response for a plate.
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length error. On the other hand, the improved FRF estimated by the proposed method matches
well with the exact FRF in both magnitude and phase if it is assumed that 180 and �1801 phase
are the same as in Fig. 12.
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Fig. 12. Phases of two impulse response spectrums with 1.0 s record length, 8.0 s record length, and the improved FRF.
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5. Conclusion

This paper dealt with a special error which occurs in impact hammer testing, especially when
record length is not sufficiently long. This kind of error, called as a finite record length error, is
uncovered, formulated by the theoretical process, and improved by the single dof method and the
optimization method. Some examples are carried out to show both the characteristics of the finite
record length error and the effect of the optimization method. The conclusion of this paper can be
summarized as the following:
(1)
 The finite record length error, which makes the impulse response spectrum to be different from
the exact FRF, is theoretically formulated.
(2)
 Exponential window used to reduce some errors including the finite record length error causes
a bias error of the impulse response spectrum.
(3)
 The single dof method directly estimating the system parameters from an impulse response
spectrum including the finite record length error is applied to a multi-dof system and an
optimization method is proposed to improve the accuracy of the parameters.
(4)
 Numerical and experimental examples showed the effectiveness of the proposed method to
reduce the finite record length error.
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